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Electron—plasmon and electron-magnon scattering in
ferromagnets from first principles by combining GW and GT

self-energies

Dmitrii Nabok @', Stefan Bligel '™ and Christoph Friedrich

This work combines two powerful self-energy techniques: the well-known GW method and a self-energy recently developed by us
that describes renormalization effects caused by the scattering of electrons with magnons and Stoner excitations. This GT self-
energy, which is fully k-dependent and contains infinitely many spin-flip ladder diagrams, was shown to have a profound impact on
the electronic band structure of Fe, Co, and Ni. In the present work, we refine the method by combining GT with the GW self-energy.
The resulting GWT spectral functions exhibit strong lifetime effects and emergent dispersion anomalies. They are in an overall
better agreement with experimental spectra than those obtained with GW or GT alone, even showing partial improvements over
local-spin-density approximation dynamical mean-field theory. The performed analysis provides a basis for applying the GWT

technique to a wider class of magnetic materials.
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INTRODUCTION

Many-body spin excitations in interacting electron systems are
complex quantum mechanical processes that are fundamental for
the description of the properties of magnetic materials. In the field
of spintronics, the interaction between conduction electrons and
collective spin excitations is critical for explaining the temperature
dependence of resistivity and magnetotransport'. There is experi-
mental evidence that the scattering of propagating electrons and
holes on collective and single-particle spin excitations in magnetic
materials lead not only to a renormalization of the quasiparticle
band dispersion but also to the appearance of characteristic band
anomalies in the quasiparticle spectra measured by the angle-
resolved photoemission spectroscopy (ARPES)>™, a claim that was
very recently corroborated by a common theoretical and experi-
mental study of photoemission in iron’. Furthermore, spin
fluctuations are considered as one of the key mechanisms to
mediate the Cooper pairing in high-T. superconductors such as
cuprates and iron-based pnictides®'°.

The elementary ferromagnets Fe, Co, and Ni are prototypical
model systems to study the effects of the electron-magnon
interaction. Progress in photoemission spectroscopy made it
possible to obtain ARPES spectra in high energy and momentum
resolution, sufficient to resolve anomalies that may appear in the
quasiparticle band dispersion as indicators of genuine many-body
scattering processes, such as magnon-induced renormalization
effects. This opens an important source of information for
theorists to develop and test new theoretical approaches.

Although Kohn-Sham (KS) spin-density-functional theory (DFT)
is a well-established and powerful tool to describe magnetic
materials'’, it is limited to groundstate properties in practice,
unable to yield accurate excitation energies and lifetime broad-
enings, which would be relevant for the interpretation of
photoemission spectra. Nevertheless, it does provide a reference
system on which more advanced first-principles approaches are
based. One of these methods is the dynamical mean-field theory

(DMFT), which maps the interacting many-body system onto a
minimal Anderson impurity model'>'® containing only a small
number of electrons, making it possible to include correlation
effects to high orders. However, DFT+DMFT suffers from several
restrictions: the self-energy is strictly local, its k dependence is
therefore lost. The electron-electron interaction is described by
parameters (U and J), which are often fitted to experiment or
treated as free parameters, limiting the predictive power of
the method, and there is a double-counting problem related to
the treatment of exchange and correlation between DMFT and the
DFT reference.

Therefore, we resort to an alternative theoretical framework, the
many-body perturbation theory (MBPT), which is not subjected to
these restrictions. Practical calculations rely on an approximation
to the electronic self-energy 2(r, ¥'; w), which describes the many-
body exchange and correlation processes that an electron or hole
experiences while propagating through a material'. The widely
used GW self-energy approximation'® is one such approximation.
It has been applied to Fe, Co, and Ni'®'® and yielded results in
better agreement with the experimental values for the band-
widths and the effective masses than KS DFT. Importantly, the GW
self-energy predicts the bands to be broadened due to lifetime
effects. The predicted broadening is, however, way too small
compared with what is seen in photoemission spectra. Further-
more, the theoretical spectra do not exhibit any band anomalies,
of which there is experimental evidence.

In a recent publication’, we showed that a different
approximation, which we called GT self-energy, improves on
these shortcomings. The GT self-energy describes the scattering of
electrons with spin waves and single-particle spin-flip excitations
and is thus complementary to GW, in which the scattering
processes do not involve a spin-flip. Collective spin waves and
single-particle excitations are described jointly by a magnetic T
matrix, constructed from solutions of a spin-flip Bethe-Salpeter
equation (BSE). Applying the GT self-energy to the elementary
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ferromagnets Fe, Co, and Ni vyielded spin-, energy-, and
momentum-dependent spectral functions that could be directly
compared with photoemission spectra. The theoretical spectral
functions revealed strongly renormalized quasiparticle bands with
profound lifetime broadening and anomalies in the band
dispersion. In particular, a waterfall-like structure in a spin-down
valence band at a binding energy of ~1.5 eV was predicted in Fe
and later measured by ARPES’.

Despite these successes, the theoretical GT spectra also showed
deficiencies. First, the d bandwidth was overestimated compared
with the experiment. Second, the lifetime broadening and band
anomalies seemed to be overestimated, as well. For example, the
1.5 eV waterfall structure, while appearing at about the right
energy and momentum, has an over-pronounced shape when
compared to the experiment. Third, we noticed a violation of
causality, manifesting itself in an incorrect change of sign in the
imaginary part of the self-energy at high (absolute) energies. This
sign change is reflected in the spectral function leading to an
unphysical loss of lifetime broadening far away from the Fermi
energy and to an equally unphysical negative quasiparticle
weight. The latter results in a violation of particle-number
conservation because the quasiparticle weights partly cancel each
other out when integrated.

We attributed these deficiencies to the fact that the GW self-
energy was neglected in the calculations at the time for
simplicity'®. We expressed the expectation that the inclusion of
GW would remedy these deficiencies. In the present work, as a
continuation of the previous study, we present results calculated
with the combination of the GT and the GW approximations,
which will be referred to as GWT self-energy in the following. We
note that, in contrast to GW and GT, the name GWT should not be
read as a formula (as a product of G, W, and 7). It is simply a name,
whereas both GW and GT are, in fact, formulas [product of G and
W (7). The name GWT is reminiscent of GWI, the common
expression for a vertex-corrected self-energy with the vertex
function T. In fact, GWT can be understood and written as GWT
with a suitably defined vertex function.

We will demonstrate that the aforementioned problems are
solved in the combined approach. In particular, it will be shown
that the inclusion of GW removes the violation of causality.
Furthermore, we will see that GWT tends to flatten many of the
features we have seen earlier in GT calculations but, only in a few
cases, suppresses them. In the particular case of the 1.5eV band
anomaly, the agreement with the experiment is further improved
by GWT, both in terms of location (energy and momentum) and
shape. Finally, we will discuss the effect of the self-energy on the
magnetic moments, exchange splittings, and the d bandwidths of
each material and show that the GWT approach is superior to the
other two self-energies and to LSDA.

The combination of GW with T-matrix-based self-energies has
been the subject of several works in the literature. Romaniello
et al.?® focus on a joint derivation of GW and GT (and its
combination) from fundamental equations of MBPT. The derived
approximations are then tested on the Hubbard molecule.
Contrary to our approach, their formulation is not free of
double-counting terms. Although these terms are uniquely
defined in principle, they might not fully cancel if GW and GT
are implemented with different numerical approximations. In
ref. 2!, an approach combining GW with the T matrix, similar to
ours, was used to calculate a satellite peak at ~—6¢eV in the
spectral function of Ni. Zhukov et al??> employed the same
approach for the analysis of lifetime broadening effects in d states
of Fe and Ni, in particular discussing the relative importance of
spin-flip and non-spin-flip processes. In both of these works,
owing to a double-counting of diagrams in the GW and GT series,
an explicit double-counting correction was found to be necessary.
By contrast, our formulation is double-counting free. Moreover, we
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present the k-resolved GWT spectral functions and analyze
emergent band dispersion anomalies.

The GWT method has been implemented in the spex code'®
within the framework of the full-potential linearized augmented-
plane-wave method, which provides a highly accurate basis set?®
for all-electron calculations, equally suitable for itinerant s states
as for localized d states, making the LAPW basis the optimal basis
set for the treatment of transition elements. The GW method
employs a mixed product basis'®2%2°, derived from the LAPW
basis. The GT method, on the other hand, employs a Wannier
basis set for the representation of the T matrix, a quantity that
depends on four points in space. This spatial representation
allows an efficient truncation of the short-range screened
interaction without sacrificing numerical accuracy.

The article is organized as follows. The theory and the relevant
computational details are outlined in the Methods section. The
results of applying the GW, GT, and GWT self-energies to the
electronic structure of bcc Fe, fcc Co, and fcc Ni are presented in
the Results section. We analyze the momentum- and energy-
dependent quasiparticle spectral functions and discuss the effects
of the combined action of the spin-flip and non-spin-flip
scattering processes. As part of our analysis, we provide a detailed
comparison between the results obtained with different theore-
tical approaches and the available experimental values for the
magnetic moments, exchange splittings, and d bandwidths. The
Discussion section concludes the paper with a summary.

RESULTS
Band structure of iron

Figure 1 presents, for iron, the momentum- and energy-resolved
spectral function [Eq. (8)] along with P-T-N, as obtained from the
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Fig. 1 Renormalized band structures of bcc Fe. Spin majority and
minority band structures of bcc Fe renormalized with GW, GT, and
GWT self-energies along P-I'-N. The spectral functions [Eq. (8)] are
represented as color-coded 2D plots. The LSDA band structure is
shown as red lines.
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three self-energies GW, GT, and GWT. For comparison, the LSDA
bands are included as red lines. Owing to the explicit
electron—-electron scattering described by the different self-
energies, all renormalized band structures exhibit lifetime broad-
ening of the line widths, however of a rather different magnitude.

As seen in the top panels, the GW bands exhibit a well-defined
quasiparticle character with the least broadening among the self-
energies. The line widths are small close to the Fermi energy and
grow towards higher (positive and negative) energies, whereas there
is not much difference in lifetime broadening between the two spin
channels in contradiction to the experimental observations®.

The picture changes drastically with the GT self-energy. The
lifetime broadening still vanishes at the Fermi energy as it must,
but, from there, it grows very rapidly, particularly in the majority
spin channel, where, in the binding energy range 1-2 eV (negative
energies in the plot), the bands disappear completely. Figure 2
shows the renormalized band structure along I'-N on a smaller
energy range and with measured photoemission peak positions.
Indeed, between —1eV and —2eV there are no experimental
points, just where the theoretical spectrum shows the loss of
quasiparticle character. This is in marked contrast to the GW
quasiparticle bands, which remain well-defined throughout this
energy range. Similar suppression of quasiparticle character can
be seen, albeit to a much lesser degree, in the spin-down channel
above the Fermi energy at ~0.5eV. The lifetime broadening
decreases again for larger energies, and the quasiparticle bands
reappear. We see a much stronger difference in lifetime broad-
ening between the two spin channels than in GW. One can also
observe a similar difference between particle and hole (empty and
filled) states. Both observations can be explained by the spin
selectivity of the electron-magnon scattering'®, which predicts
the strongest renormalizations to occur for occupied spin-up and

r N T N
Fig. 2 Comparison of computed and experimental band struc-
tures of bcc Fe. Spin-dependent band structures of bcc Fe are
renormalized with GW, GT, and GWT self-energies along I'-N and a
smaller energy range. Experimental photoemission peak positions
(black stars) are taken from ref. 33,
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unoccupied spin-down states. The spin asymmetry of the line
broadening is in accordance with experimental measurements>’
and also with LSDA4-DMFT calculations?®%,

Combining the two self-energies in GWT, we see that the main
features of GT remain intact. In addition, we observe an important
renormalization effect originating from the GW self-energy: one of
the bands that cross the Fermi energy in LSDA is pushed below the
Fermi energy and never crosses it. This effect is seen in both spin
channels and for GW and GWT but not for GT. In fact, the
consequential missing Fermi surface sheets (forming a hole pocket
in the spin-down case) are confirmed in experimental ARPES
measurements, where such Fermi surface sheets are not found?%%°,
Moreover, Fig. 2 corroborates this finding, as it does not show any
photoemission peaks that would indicate the bands in question to
cross the Fermi energy. It does show a photoemission peak position
close to the N point that is in favor of the spin-down band to
remain below the Fermi energy. This is also consistent with recent
quasiparticle self-consistent GW calculations®%3",

It is interesting to note that for the respective spin-up band to
show a physically correct band dispersion, it is important to take
off-diagonal elements®? of the GW self-energy into account
according to Eq. (8) because of strong hybridization effects (that
are different in GW and LSDA). With the usual GW approach of
considering only diagonal elements, the bands show unphysical
dispersion anomalies, see Fig. 3, where we zoom into the
respective energy region along the I-N path. The correct
dispersion is fully recovered when the ‘full’ self-energy matrix
(diagonal+off-diagonal elements) is taken into account. The
reason for this behavior can be understood from comparing the
avoided crossings of the (red) LSDA and the (green) GW (full)
bands close to N. They clearly take place at different momenta. As
a consequence, the standard procedure of approximating the
quasiparticle wave functions by the KS wave functions [GW (diag)]
breaks down at that point, and we are forced to calculate the
quasiparticle wave function explicitly by diagonalization of the
quasiparticle equation [GW (full)]. We also see from Fig. 3 that, for
the most part, the two GW approaches give nearly identical
results. This is also true for the spin-down channel of iron as well
as for cobalt and nickel. Therefore, we have employed GW (full)
only for the band structure of iron.

Comparing different self-energies in Fig. 4, it might be
surprising at first glance that the combined GWT self-energy
seems to show less intensity and lifetime broadening than GT,
whereas one might expect the lifetime effects to increase, rather
than decrease, when more diagrams, i.e., more scattering
processes, are included. On the one hand, the observation is
not completely accurate. For binding energies larger than ~3 eV
we clearly see that the lifetime broadening of GW dominates,
making the GW and GWT band structures look nearly the same at

0.00

e GW (diag)
—0-251 — Gw (full)
—~0.504 —— LSDA

—1.00

-1.25 4

-1.50

N

Fig. 3 Role of off-diagonal self-energy matrix elements in bcc Fe.
Enlarged view of the iron spin-up band structure obtained from
LSDA and two GW approaches: one [GW (full)] includes off-diagonal
elements of the self-energy, the other [GW (diag)] does not. For
clarity, lifetime broadening is suppressed. GW (diag) leads to an
unphysical band dispersion close to the N point. Its correction
requires the treatment of the self-energy as a full matrix [GW (full)].
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Fig. 4 Renormalized band structures of bcc Fe for N'-H. Majority
and minority band structures of bcc Fe renormalized with GW, GT,
and GWT self-energies along I'-H. Quasiparticle energies extracted
from the ARPES spin-down spectrum in the vicinity of the
electron-magnon kink” are shown by black stars.

larger energies, whereas the GT bands become very sharp there.
On the other hand, we do see an apparent decrease in the peak
broadening at lower binding energies. The bands are narrower
again, and certain features become less pronounced, though
without disappearing altogether, see, e.g., the spin-down band
anomaly just above the Fermi energy. To understand this
seeming contradiction, we have to remember that not only do
the imaginary parts of the two self-energies add up but also their
real parts. The imaginary part gives rise to the line broadening,
whereas the self-energy’s real part shifts the quasiparticle bands
(more generally, the spectral function) energetically. The GW
self-energy has a rather sizable real part, which, in the present
case, shifts the quasiparticle bands away from the energies
where the self-energy’s imaginary part is large. This detuning
effect can ultimately lead to weaker lifetime effects in the GWT
spectral function.

Comparing the computed band structures with experimental
measurements in Fig. 2, one notices that the best agreement is
achieved with the GWT self-energy. We thus see the strengths of
GW and GT gainfully combined in the GWT approach. It is
particularly noteworthy that GWT yields a flat majority band at a
binding energy of 2.34 eV, nicely matching with several photo-
emission peak positions at this energy. Interestingly, in LSDA
+DMFT?3 this part of the spectrum is completely washed out,
offering no explanation for the experimentally measured points.

The inclusion of the electron-magnon scattering does not only
lead to pronounced lifetime effects, but it can also give rise to
dispersion anomalies in the quasiparticle bands. One such
anomaly is a waterfall (kink) structure in the dispersion of a
spin-down band of Fe along I'-H at a binding energy of ~1.5¢eV,
caused by electron scattering with virtual Stoner excitations. It
was recently predicted by us”'® and subsequently confirmed
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experimentally in high-resolution ARPES’. In Fig. 4, the anomaly is
shown together with the respective photoemission data. The GW
renormalization (top panel) moves the band towards the
experimental points but does not show any anomaly. The GT
renormalization alone (middle panel) affects the formation of a
kink structure, in agreement with the experiment, albeit at a
slightly lower momentum and energy. Furthermore, the shape of
the kink appears exaggerated in GT compared with the
experimental points. If the two renormalizations are combined
in the GWT method (lower panel), both the shape and location of
the dispersion anomaly improve significantly. The band anomaly
gets flattened but does not disappear, its shape being in very
good agreement with the experimental observation.

Comparing the different renormalized band structures of Fig. 1
reveals a curious and unexpected behavior: although the GW and
GT quasiparticle bands (where they are well-defined) are clearly
different from the LSDA band structure (red lines), we find the
GWT quasiparticle bands surprisingly close to the LSDA bands
again. First, we have to emphasize that this is not a general
behavior. Even in the same material, a clear difference between
GWT and LSDA is seen along a different k path, I-H (Fig. 4).
However, the observation hints at a compensating effect that we
will encounter again later-on and that deserves to be investigated
in more detail.

We do this here by an analysis of the renormalization of the Fe
5 states at (LSDA) binding energies of 2.19eV (spin-up) and
0.42 eV (spin-down). Figure 5 presents the GW, GT, and GWT self-
energies together with the resulting spectral functions, see the
caption for the exact definitions. We also plot the function w — e,
(dotted lines). Following the Methods section, the spectral
function exhibits the main quasiparticle peak approximately
where this linear function intersects with the real part (solid lines)
of the respective self-energy. (It is approximate because the
imaginary part of the self-energy also has a role regarding the
exact peak position—as would the off-diagonal self-energy matrix
elements, which are neglected in the present analysis, though.) In
the following, we focus on the more interesting spin-up case. At
€p, (the node of the linear function), we see that the real parts of
the GW and GT self-energies have approximately the same
magnitude but opposite signs. Their sum (green solid line) is thus
close to zero and its intersection with the linear function is nearly
at the KS energy ep,. One also notices that the rate of change of
the two real parts is nearly the same but, again, of the opposite
sign so that their sum stays in a relatively small window over a
quite large energy range (from —2.5 to —0.5 eV). In this range, it
exhibits some oscillatory structure, which clearly stems from GT,
whereas GW is rather featureless in the displayed energy range.
We can say that while GW dominates the overall behavior, it is the
GT self-energy that provides the fine structure.

Similarly, it is the GT contribution that is predominantly
responsible for the lifetime effects in the respective energy
range. They are nearly an order of magnitude larger than in GW
and cause an extreme broadening of the quasiparticle states as
represented in the corresponding spectral function plot
(Fig. 5c-d). However, the imaginary part of GT falls off quickly
to either side so that it can be seen as a modulation of the
smooth parabolic-like behavior of the imaginary part of GW. It is
the GW self-energy that prevails at large binding energies and
prevents the imaginary part of GWT from becoming negative as
happens in the case of the GT self-energy below —4eV. Such a
forbidden sign change can be traced back to a violation of the
time ordering and, thus, to a violation of causality. We will later
come back to this point.

The GWT quasiparticle peak is located between the ones from GT
and GW, but its intensity is strongly suppressed. This is because, at
the position of the peak, the imaginary part of GWT happens to be
large, contrary to the cases of GW and GT. Here, we have an
example where the lifetime broadening in GWT is not simply the
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Fig. 5 Self-energies and spectral functions for selected valence states in bcc Fe. The GW, GT, and GWT spin-up and spin-down self-energies
(a, b) and spectral functions (c, d) for the triple-degenerate I',5 Fe valence states. Solid and dashed lines represent the real and imaginary parts

of (9,27 (w —Ay)

— v |op,) (GW and GWT) and (¢g,|2°(w — A))|@g,) FAx/2 (GT), respectively. The intersections of the real part with the

linear function w — ¢}, are (approximately) the quasiparticle peak positions. The Fermi energy is set at w =0.

sum of the broadenings from GW and GT. The GWT spectral
function, similarly to the GT case, shows two side peaks at ~—2 and
—1eV, which bear resemblance to satellite replicas. However, in
GWT they appear rather as extended shoulders to the main peak
than as two distinct peaks as in GT. Considering the strong
suppression of the GWT quasiparticle peak, one might wonder
where the quasiparticle weight goes to. The shrinking of the peak is
accompanied by a redistribution of weight around the peak, for
example, forming the two shoulders. It indeed turns out that the
(numerically) integrated areas under the GW and GWT peaks,
despite their different shapes, are very nearly identical. On the other
hand, the integral under the GT peak is larger (as is obvious to the
naked eye) and very close to one. As a consequence, the GW and
GWT peaks integrate to less than one in the presented energy
range, namely to ~0.6, which leads to the question: where are the
remaining 40%? The question is resolved when one extends the
plot to a much larger energy scale: The GW (and GWT) spectral
function displays a very long tail towards larger binding energies
where it additionally exhibits a shallow peak (plasmon satellite). If
this long tail is fully taken into account, the spectral function, in fact,
correctly integrates to one. The long tail can be attributed to the
large plasmon energy, present in GW and GWT but not in GT, in
which the much smaller magnon energy sets the scale.

The spin-down spectra are less exotic than their spin-up
counterparts. The GT quasiparticle peak is moderately renorma-
lized to lower energy and has a larger width due to the higher
value of the imaginary part of the self-energy with respect to the
GW peak. The location of the GWT peak is close to the one from
GW. The peak broadening is intermediate between that of GW and
GT, another example that lifetime broadenings do not simply sum,
even if the self-energies do.

The renormalized band structures of Fig. 2 look remarkably
similar to respective results from LSDA+DMFT?52733, However,
there are differences in the details: (1) we have already
commented on the flat majority quasiparticle band at —2.34 eV
in GWT, which nicely agrees with photoemission peak positions at
this energy. LSDA+DMFT, on the other hand, does not show a

Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

distinct feature there, which led the authors of ref. 33 to suspect
the peaks to be a surface effect. Similarly, in a plot for T —P —H
(not shown), we find a flat band at P ~—3.2eV, which loses
intensity quickly towards T but persists nearly halfway to the H
point. For this k range and energy, one indeed observes peaks in
ARPES, whereas the LSDA+DMFT ('LDA++') spectrum is basically
featureless there?®. (2) We observe band anomalies caused by
electron-magnon scattering, e.g., at ~—1.5eV in a minority hole
band and another at 0.5eV in a minority electron band. The
former is seen in the experiment. We attribute the absence of both
effects [(1) and (2)] in DMFT to the spatial restriction imposed by
the Anderson impurity. The impurity cannot host extended
excited states such as plasmons or spin waves. So, instead of as
well-defined many-body states, they rather appear as an
incoherent background in the excitation spectrum. (3) LSDA and
LSDA+DMFT (and also GT) predict extra Fermi surface sheets
(@ hole pocket in the minority channel) close to the N point,
which, according to all available experimental evidence?®?°, do
not exist. GW and GWT pushes the respective bands below the
Fermi energy, making the spurious sheets disappear. With all
these being said, it should be noticed that GWT overestimates
the binding energies of the photoemission peak positions in
the minority channel. This overestimation is stronger than in
LSDA-+DMFT. However, one should keep in mind that the present
GWT approach is free of any adjustable parameters, while the
LSDA+DMFT method relies on the U parameter, which was
chosen in the cited works so as to maximize the agreement of the
binding energies with the experiment.

In ref. '°, we presented color plots for the imaginary part of the
GT self-energy of iron as a function of crystal momentum and
frequency. It is the k dependence of the self-energy that is one of
the fundamental differences between MBPT and DMFT approaches
(present in MBPT but missing in DMFT). The addition of the GW
self-energy into GWT gives rise to some important changes and
improvements. Figure 6 shows the imaginary part of the GWT self-
energy expectation value X (w — A,) = (@p,|X(w — A))|op,) as a
function of k and w for six low-lying bands n of Fe and both spins.
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Fig. 6 Momentum and energy dependence of the correlation self-energy in Fe. ImZ{ (w — A,) is shown for the lowest bands and both
spins (cf. Fig. 1). The bands are ordered with respect to their energy at I" from bottom to top (same order as in Fig. 10 of ref. '9).

We use the same plot arrangement as in ref. '° (Figs. 10 and 11 dominates for small binding energies with intensive peaks below
therein). The plots show a striking similarity to the GT plots in a (above) the Fermi energy for the spin-up (spin-down) channel.
small energy range around the Fermi energy (~—2eV<w<2eV), The main observations made about the plots in ref. ' hence apply

again demonstrating that the electron-magnon scattering (GT) here, too, and we do not want to repeat them.
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However, at larger binding energies, GW takes over, and here
the GWT plots clearly deviate from the GT ones. One of the most
important amendments brought about by including GW is seen
for larger binding energies in the spin-up channel: the imaginary
part of the GT self-energy becomes negative at around
w = —4¢eV. This is perhaps not so readily seen in Fig. 10 of
ref. '° because the plots show the absolute value of the
imaginary part. However, the sign change reveals itself by
white lines traversing the diagrams from left to right, marking
the regions where the imaginary part vanishes. This change of
sign is unphysical. Causality demands the imaginary part of the
self-energy to be non-negative (non-positive) for w <0 (w > 0). In
ref. '°, we expressed the expectation that the inclusion of GW
diagrams would restore the correct sign. Indeed, as is evident
from Fig. 5, no unphysical sign change is observed at larger
binding energies. So, it is the GW self-energy that provides the
lifetime effects necessary to rectify the picture. (Had we chosen a
larger energy scale towards positive w in Fig. 10 of ref. %, we
would see an analogous effect in the spin-down channel.)

Another noteworthy effect can be observed in the third plot
from the top (spin-up and spin-down). These two plots pertain to
bands that cross the Fermi surface twice. (The crossings are about
halfway between P and I as well as close to the N point in the
spin-up case, and symmetrically and close to I for spin-down.) In
the GWT plots, one can make out step-like features that go all the
way from top to bottom just where the bands cross the Fermi
energy. Such features are not found in the corresponding GT plots.
Closer inspection shows that the step-like feature is not a
discontinuous step. It is smoothed out to some extent but
remains discernible as a step nonetheless. It turns out that this
step has the same mathematical origin as the well-known
logarithmic divergence of the group velocity in metallic Hartree-
Fock (HF) bands where they cross the Fermi energy. The
smoothing of the step has a logarithmic form (with a logarithmic
divergence). GWT (and GW) quasiparticle bands, on the other
hand, do not exhibit a logarithmic divergence because there is no
divergence right at the Fermi energy (w=0). A more-detailed
discussion of the logarithmic divergence in GW together with its
efficient numerical treatment will be presented elsewhere.

Band structure of cobalt and nickel

To complete the series of elementary ferromagnets, we have also
carried out GW, GT, and GWT calculations for fcc cobalt and fcc
nickel. The corresponding renormalized band structures are
compared in Figs. 7 and 8. Cobalt and nickel have fewer empty
d states than iron. As a consequence, the phase space of spin
excitations is smaller and, hence, we observe a considerably
smaller impact of electron-magnon scattering on the electronic
structure than in iron. The reduced effect of electron-magnon
scattering is particularly evident in nickel, where the GWT-
renormalized majority and minority band structures look identical
to the GW ones. They are, of course, not exactly identical, but, by
eyesight, it is hard to see any difference. This might be surprising
since the GT band structures clearly show broadening and energy
renormalization. Here, we see an effect that we have already
encountered before and that we called a detuning effect: the
(comparatively) large real part of the GW self-energy shifts the
quasiparticle energy into a region where the GT self-energy is
small and where GW dominates. In ref. '°, we discussed weak
magnon satellite features in nickel at binding energies of ~0.8 and
1.7eV. Fig. 8 shows that the GWT calculation washes these
features out so that they are not visible anymore in the color plot.
However, the satellites are still present in the raw data as
shoulders to the main quasiparticle peaks (not shown), but
certainly too small to be detected in the experiment.

Similar to nickel, there is hardly any difference between the
spin-down GW and GWT band structures of cobalt. Compared
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Fig. 7 Renormalized band structures of fcc Co. Spin-dependent
band structures of renormalized with GW, GT, and GWT self-energies
along X —T'— K.
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Fig. 8 Renormalized band structures of fcc Ni. Spin-dependent
band structures are renormalized with GW, GT, and GWT self-
energies along X —I' — K.
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with that, however, we observe a strong lifetime-broadening
effect in the spin-up channel from just below to the Fermi
energy down to binding energy of ~3eV: the GWT bands are
significantly broader than in the case of GW, though not
completely losing their quasiparticle character as in iron. The
band energies, on the other hand, turn out to be not very
different from the GW ones. Furthermore, we see an effect in Co
that had gone unnoticed when we collected the results for our
previous publication'®. The GT renormalization produces a tiny
spin-up hole pocket at the X point that is neither present in LSDA
nor in GW. Renormalizing with the combined GWT self-energy
pushes the band in question back below the Fermi energy, and
the hole pocket disappears again.

Tables

One of the most important quantities to characterize a spin-
polarized system is its magnetic moment. The spin magnetic
moment is directly given by an integration over the spin density
and is, as such, perfectly computable by spin-density functional
theory. In fact, the LSDA magnetic moments of iron, cobalt, and
nickel are very close to the experimental results as shown in
Table 1, so close that they are hard to match by any theory. (The
moments are up to 0.05 g lower than in a previous publication of
ours*. The small deviations are due to different basis sets used in
the two studies. The present study employs a more precise basis
for the wave functions.) The table also lists the respective magnetic
moments obtained with the GW, GT, and GWT methods. Two kinds
of GW results are given. One includes—for consistency with the
present GT and GWT calculations—the A, correction (see Methods)
for the reference system, and the other does not. The latter value is
the one that should be compared to GW values from the literature.
We want to emphasize at this point that, as explained in the
Methods section, the A, correction is applied to the mean-field
reference system but later subtracted in the solution of the Dyson
equation. One can say that the two GW values are based on two
different starting points, and their difference shows the well-known
starting point dependence of GW. We will come back to this point
at the end of this section. Neither of the two GW magnetic
moments improves on the LSDA values. The ones in the brackets
are systematically larger, the others nearly identical to LSDA. The
GT moments, on the other hand, quite strongly underestimate
the experimental values, far more than LSDA overestimates. Finally,
the highest-level theory, the GWT approach, represents a clear
improvement over LSDA. We find magnetic moments in very good
agreement with the experimental values for iron and cobalt. Nickel
is the only exception with a magnetic moment nearly identical to
the LSDA value.

When comparing the effect of the different self-energies on the
band structures of Fe, Co, and Ni (Figs. 1, 7, and 8), we notice a
common behavior: GW shifts the d bands up and contracts them,
giving rise to smaller d bandwidths, whereas GT tends to increase
the bandwidth. In fact, earlier GW studies'®'® of the simple
ferromagnets reported that the d bandwidths shrink upon
renormalization, bringing them closer to experiment for some of

Table 1. Electron spin magnetic moments (in ug) of Fe, Co, and Ni
computed with different techniques.

LSDA GW GT GWT exp’
Fe 2.15 2.12 (2.17) 2.00 2.09 2.08
Co 1.58 1.57 (1.65) 1.28 1.54 1.52
Ni 0.58 0.59 (0.65) 0.49 0.59 0.52

GW values in brackets are calculated without the A, correction (see text).
"Table 12 of ref. >2,

the materials. Since we now seem to have a competing effect by
the GT self-energy, it is interesting to investigate the bandwidths
obtained with the different self-energies. Table 2 presents a
comparison of our values with experimental and theoretical
results from the literature. For consistency, we determine the d
bandwidth in the same manner as in the experimental studies,
namely based on the electron binding energies taken at specific
critical points (see footnote 33 of ref. *°), N, for bcc Fe and L, for
fcc Co, and Ni. The d bandwidths of Fe are given for both spins
separately because of the large exchange splitting in this material,
whereas the values for Co and Ni are spin-averaged. In agreement
with previous studies, we find the GW d bandwidths to be
consistently smaller than the LSDA values, thus improving the
agreement with the experiment for Co and Ni but leading to
underestimated values for Fe. The GT bandwidths, in contrast,
tend to be larger than in LSDA. This opposite effect partially
compensates for the d-band shrinkage caused by GW in the
results obtained from the combined GWT self-energy. In this way,
the iron GWT bandwidths now end up very close to the
experiment, showing the best agreement among the theoretical
methods. In the case of Ni, an early GW study'® already
demonstrated that the d bandwidth decreases by the self-
energy renormalization, bringing it in close proximity to the
experimental value. As we have seen before, the GT self-energy is
marginal in nickel. As a consequence, the bandwidths obtained
from GW and GWT are nearly identical. For cobalt, although closer
to the experiment than LSDA, there is still a significant over-
estimation in both GW and GWT. On the one hand, this might be
due to different crystal structures, hcp in experiment vs. fcc in the
present study. On the other hand, the corresponding experimental
value is given with a large inaccuracy of measurement, and the
GWT bandwidth is only just outside the error range. Furthermore,
the authors of ref. 36, whereas not giving an explicit value,
maintain that the bandwidth is larger than 4 eV, in accordance
with all theoretical values.

Table 3 presents the exchange splittings of several valence
states at special k points, for which experimental measurements
are available. LSDA mostly overestimates the experimental
exchange splittings, reaching a maximal difference of 0.81eV
in the case of cobalt. GW yields exchange splittings system-
atically smaller than the ones from LSDA. In particular, with the
A, correction in the reference system (values without brackets),
GW underestimates nearly all experimental splittings, in some
cases quite strongly. We find the opposite trend for the GT
exchange splittings. They systematically overestimate the corre-
sponding experimental values. So again, the GWT method is seen
to benefit from a compensating effect between GW and GT, and
the respective exchange splittings turn out to be close to the

Table 2. d bandwidths (in eV) for bcc Fe, fcc Co, and fcc Ni obtained
from LSDA, GW, GT, and GWT and compared with experimental data.
Wy LSDA GwW GT GWT exp
Fe Nq; 474 4.29 (4.30) 5.10 4.67 4.50+0.23"
Fe Ny, 3.54 3.46 (3.35) 3.96 3.57 3.60+0.20"
Co (Ly) 4.64 4.18 (4.33) 4.67 440 3.8+0.52
> 4,03
Ni (L;) 4.58 412 (4.18) 4.56 412 3.9+0.24

The bandwidths are estimated, as in the experiment, based on the
specified states. The GW values in brackets are computed without the A,
correction (see text).

'Ref. 3.

2Ref. 7.

3Ref. 36,

“Ref. ' (based on experimental data from ref. 2).
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Table 3. The exchange splitting AE, at special k points computed
with different techniques and compared with available experimental
values.

AE, LSDA GW GT GWT exp

Fe

Iys 1.77 1.41 (1.55) 2.09 1.90 2.08+0.10
Hio 1.56 1.06 (1.19) 1.64 1.51 1.30+0.30’
P, 1.36 0.96 (1.08) 1.50 1.19 1.35+0.10°
N, 1.60 1.19 (1.32) 1.78 1.49 1.60+0.15
Co

Iys 1.44 0.98 (1.24) 1.39 1.18 1.20 + 0.30?
I, 1.66 1.20 (1.48) 1.49 1.04 0.85 +0.20%
Ls 1.48 1.00 (1.26) 1.33 1.18 1.15 £ 0.40°
Ni

Ls 0.56 0.37 (0.51) 0.51 0.37 0.31+0.033
X> 0.52 0.30 (0.45) 0.44 0.31 ~0.24

GW values in brackets are calculated without the A, correction in the
reference system (see text).

' Ref. %3

2 Ref. 37,

3 Ref. >4,

4 Ref. *°,

experiment throughout, reaching a maximal deviation of only
0.21 eV for a state in iron. The standard deviations for LSDA, GW,
GT, and GWT amount to 0.36, 0.34 (0.33), 0.29, and 0.14eV,
respectively.

The cases of cobalt and nickel deserve a second look. LSDA is
known to overestimate the exchange splittings in these materials
rather strongly '%3’. In nickel, the LSDA value is larger by about a
factor of two. From the values in the table, we see that the
standard GW renormalization (values in brackets) corrects the
values in the right direction but only by a small step. Applying GW
on the A,-corrected reference system, however, yields exchange
splittings close to the experiment. The GWT splittings are nearly
identical to the GW ones because the GT self-energy has only a
minor role in nickel. This is different in the case of cobalt. While
the GW correction is seen to have an effect similar to that of Ni,
the exchange splittings change significantly by the GT renorma-
lization. With GW alone, deviations are —0.22, 0.35, and —0.15 €V,
and after applying GT (in GWT) they are reduced to merely —0.02,
0.19, and 0.03 eV, respectively.

Finally, we want to have a closer look at the two types of GW
values shown in Tables 1-3. Both types rely on one-shot GW
approaches but are based on two different reference systems, the
standard LSDA mean-field system, which however violates the
Goldstone condition'*38, and the same system where the spin-up
and spin-down eigenenergies are shifted with respect to each
other with a universal parameter A, (see Methods). In ref. 34, we
showed that a self-consistent Coulomb-hole screened-exchange
(COHSEX) calculation leads to a change in the exchange splitting
that can effectively be mimicked by the parameter A, used in the
present work. In this way, besides its original purpose to enforce
the Goldstone condition, the parameter can also be interpreted as
simulating the missing self-consistency of the one-shot approach.
It is important to emphasize that A, is thus introduced and
determined to fulfill a physical constraint, and no tuning or fitting
between theory and experiment is involved.

The difference between the two GW exchange splittings in
Table 3 shows an interesting correlation: for all systems, it
amounts approximately to A,/2, which is just half the difference
between the underlying two reference systems (A, by definition).
To understand this correlation, we write the quasiparticle energy
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(see the last paragraph of Methods) in a simplified way as
E° = €% +X°(E°) — vo, where we have suppressed A, and the
band and k dependencies. Furthermore, we have only retained
the diagonal self-energy matrix elements here (whereas the full
self-energy matrix, including off-diagonal elements, has been
taken into account in the one-shot GW calculations for the iron
band structure). Making another standard approximation by
linearizing the self-energy around ¢° eliminates the quasiparticle
energy from the right-hand side and gives E° = €% + Z°[£%(¢°) —
v2] with the renormalization factor Z° = [1 — d2°(w)/dw|.] "
We are interested in the difference of the exchange splitting
AE, = E" — E! between the two GW calculations

ME — DB = (1-2)A+2(5 —5' — 5T 4+34) (1)
where the tilde denotes quantities of the GW calculation based on
the A,-corrected reference system. We have used the approxima-
tion Z=Z7' =Z7' =271 =7 (found to be valid in the present
cases) and the fact that v — V.. — v]_ + vl = A, (by definition).

We find the second term of Eq. (1) to be significantly smaller (by
a factor of three to six) than the first term, which thus dominates.
This, together with the fact that Z= 0.5 for d states, explains the
observed behavior

AE, — AEy =~ (1 —2)A ~ = . )

This leaves us with the question of why the second term of Eq. (1)
is small compared with the first, which might appear particularly
surprising in light of the fact that the GW approximation contains
the HF exchange potential X7 (the subscript commonly used for
the HF self-energy is ‘x’, however, we use 'HF’ here to avoid
confusion with the subscripts in A, and the exchange splitting
AE,), and the (one-shot) HF exchange splittings are several times

larger than the ones from LSDA, so typically ),z — 5} > AESSPA,

Further, the ‘difference of differences’ 5/, — 51 — Z1e + Zhe [cf.
the right side of Eq. (1)] is typically in the order of A,, reaching a
multiple of it for some states, and is thus certainly not smaller than
(1—2)A, in general. It turns out that the corresponding term in GW
is much smaller because of a rather effective cancellation between
Sor — 2% and 27 — 57 (separately for 0 =1 and o = |), where the
subscript ‘c’ refers to the correlation part of the self-energy. The
latter can formally be written as X. = iG(W — v). Because of metallic
screening, we have W<, and the dominant term — iGv cancels
with the HF self-energy X, =iGv. This explains the relative
smallness of the second term on the right-hand of Eq. (1) with
respect to the first term.

DISCUSSION

In summary, we implemented a full frequency- and k-dependent
(non-Hermitian) non-local self-energy that combines the GW
with the GT (T-matrix) diagram. These diagrams describe
electron-plasmon and electron-magnon scattering processes,
respectively. The GWT self-energy (as we call it) is double-
counting free by construction and does not rely on adjustable
parameters. It has been implemented in the spex code, which is
based on the LAPW basis set. As the first application of this
method, we studied the electronic properties of the elementary
ferromagnets bcc Fe, fcc Co, and fcc Ni and compared with
results from LSDA, GW, GT, LSDA+DMFT, and experiment.

In a previous work'®, we had already investigated the effect of
the GT self-energy alone and found that it gives rise to strong
lifetime broadening close to the Fermi energy and anomalies in
the electronic band dispersions such as kinks, waterfall structures,
and magnon satellite features. In the present work, we demon-
strated that the inclusion of the GW self-energy further improves
the description of the electronic structure in several ways: (i) the
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lifetime broadening, which appears somewhat exaggerated in GT,
is less extreme in GWT. (ii) we find a good quantitative agreement
with photoemission peak positions in iron. (iii) An important
improvement concerns a band anomaly at a binding energy of
1.5 eV that we had found in the previous GT study and that was
subsequently observed in ARPES spectra’. We revisited this band
anomaly and found it to benefit from the inclusion of GW in terms
of location in energy and momentum and its shape. (iv) A
violation of causality (a wrong sign of spectral function) that had
been found in GT is healed in the GWT self-energy. (v) GWT
magnetic moments, exchange splittings, and d bandwidths are in
very good agreement with the experiment, better than those
obtained with LSDA or GWW and GT alone. Interestingly, one notices
a favorable compensating effect between GW and GT benefitting
the GWT method, which is particularly obvious in the tables for the
magnetic moments, exchange splittings, and d bandwidths (but
also noticeable in the spectral functions).

The GWT band structures are similar to results from LSDA-+DMFT.
However, we do find some improvements in the details: (1) GWT
yields well-defined quasiparticle bands at binding energies of
2.34eV (at) and 3.2 eV (at P) in good agreement with ARPES peak
positions, whereas LSDA+DMFT does not show any distinct feature
at the respective energies. (2) Several bands show dispersion
anomalies, e.g., the 1.5 eV anomaly in iron mentioned above. (3) In
contrast to LSDA-+DMFT, GWT (also GW) corrects wrong LSDA band
dispersions in iron, which would falsely predict the existence of
Fermi surface sheets (including a spin-down hole pocket) that are
not observed in the experiment.

The GT self-energy contributes significantly only in the vicinity of
the Fermi energy at the energy scale of magnon (and Stoner)
excitations. In contrast, the GW self-energy becomes dominant
beyond that region with a characteristic energy scale of plasmonic
excitations. This explains the importance of the combined GW +
GT treatment to cover the entire energy range of electronic
excitations. We emphasize that the GWT lifetime broadenings
(scattering rates) are not simply the sum of the broadenings from
GW and GT. The combination of self-energies that have distinct
characteristics in different energy regions can cause a detuning
effect: for example, the large real part of the GW self-energy can
shift (detune) a quasiparticle peak away from an energy region
where GT would cause a strong lifetime broadening. This can lead
to the somewhat counter-intuitive observation that GWT may show
less (more) lifetime broadening in certain energy regions than any
of (the sum of) GW and GT. Few examples of this effect have been
discussed. A more-detailed discussion of the lifetime effects in
these materials induced by the combined electron-plasmon and
electron-magnon scattering processes is planned for a forth-
coming article.

We showed the frequency and k dependence of the GWT self-
energy in the form of a color plot, which, by comparison with an
analogous plot'® for GT7, demonstrated that no sign problem
(violation of causality) appears in GWT. Moreover, the color plot
revealed a curious step-like behavior of the GWT self-energy at a
momentum where the corresponding quasiparticle band crosses
the Fermi energy. This step is not really a discontinuity in the self-
energy but exhibits, in its gradient, a logarithmic divergence,

GW

which has the same mathematical origin as the famous
logarithmic divergence in the group velocity of metallic HF bands.
It is important to note that the corresponding quasiparticle bands
themselves are unaffected by this divergence.

The presented method of combining the GW and GT diagrams
are implemented in a one-shot (non-self-consistent) approach, but
self-consistency is partially taken into account. To this end, a
parameter A, is introduced, which is fixed by a self-consistency
condition for the Fermi energy. Another parameter A, needs to be
included to enforce the Goldstone condition, which is otherwise
violated when using the LSDA Green function in the BSE. This
latter parameter can also be interpreted as a second self-
consistency condition. Both parameters are thus fixed by exact
physical constraints and are therefore no adjustable parameters.

To go beyond this type of self-consistency would require a full
iterative scheme. Quasiparticle self-consistent GW3' (comple-
mented by the GT self-energy) may spring to one’s mind.
However, as we have seen, the electron-magnon scattering
strongly renormalizes the electronic bands, to the extent that
some may completely lose their quasiparticle character. In this
case, it is questionable whether the quasiparticle self-consistent
GW scheme would be applicable, and one might need to employ
a fully self-consistent GWT approach (in the spirit of fully self-
consistent GW3°~*"), which would retain all lifetime effects
encoded in the imaginary part of the Green function. On the
other hand, if we compare our GWT results with the self-
consistent DMFT results, we find many similarities which suggest
that a fully self-consistent GWT treatment would not drastically
change any conclusions made in our work.

The GWT method and its implementation within FLAPW offer
new opportunities for re-investigating the electronic structure of
magnetic materials with possible applications to antiferro-
magnets and magnetic insulators. It may also help in elucidating
the mechanism of superconductivity in high-T. materials. The
inclusion of spin-orbit coupling into the formalism would make
the treatment of more complex non-collinear spin structures
possible, which are of importance for spintronic applications.
The implementation of further scattering channels, such as
described by non-spin-flip electron-hole, electron-electron, and
hole-hole ladder diagrams, may prove necessary to describe
other complex materials, for example, low-dimensional systems.
The GWT method is particularly attractive due to its relatively
low computational cost. The extra time needed for the GT part is
similar to a standard GW calculation.

METHODS

Theory
The main focus of the present study is the GWT self-energy, comprising GW
and GT diagrams

ST — 5O 5T 3)

(see Fig. 9), and its application to elementary ferromagnets. The theory of
the GT self-energy and its double-counting-free combination with GW was
laid out already in a foregoing work. For completeness, we recapitulate the
main points in this section. For more details, the reader is referred to ref. '°.

GT

Fig. 9 GWT self-energy. Feynman diagrams representing the GW (electron-plasmon scattering) and the GT self-energy (electron-magnon

scattering) are included in the combined GWT self-energy.
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The self-energy approximations are based on a systematic diagrammatic
expansion following the Hedin equations'®. Although a full self-consistent
calculation is not feasible in practice, the Hedin equations can serve as an
invaluable tool to derive and improve approximations to the self-energy.
The first iteration yields the famous GW approximation'®, commonly used
in computational condensed-matter physics ',

28W(1,2) = iG,(1,2)W(1,2). (4)

with the Green function G,(1, 2) for spin-o particles and the screened
interaction W(1, 2), calculated within the random-phase approximation.
(We use the shorthand 1=r,,t;.) However, when applied to the
elementary ferromagnets, it becomes obvious that, although GW is an
undeniable improvement over KS DFT, it lacks higher-order scattering
effects, in particular close to the Fermi energy. We conjectured these
scattering processes to be the ones between electrons and magnons,
comprising collective spin waves but also renormalized single-particle
Stoner excitations, and we argued that these are described by a
summation over spin-flip ladder diagrams. We use the term ‘magnon’ in
this general way because the solution of the BSE yields both types of
spin excitations at the same time. In general, the resulting many-body
excitations are of a mixed collective and single-particle nature.
The ladder diagram of lowest order appears in the second iteration
of the Hedin equations, each following iteration generating succes-
sively higher orders
Summing these diagrams to all orders yields the GT self-energy

397(1,2) = —i /d3d4 7°9(13,24)G% (4,3), ()

where the electron-hole T matrix is determined as a solution of the BSE
7°9(12,34) = [ d5d6 W(12)k°% (12,56)

x {W(56)K° (56,34)W(34) + T (56,34) } ©

and ¢’ = —o. The free electron-hole propagator K°7 is given by
K (12,34) = iG°(13)G° (42). 7)

It is instructive to make a parallel between the GT and the GW self-
energies. The T matrix can be viewed as an effective interaction that acts
through the exchange of magnons in a similar sense as W incorporates the
exchange of plasmons.

It is important to note here that the leading order of the GT self-energy is
seen to be the diagram of third order in W. Iterating the Hedin equations
does not generate any lower-order direct ladder diagrams. This is because:
(1) these are essentially already present in other diagrams, namely in the
Hartree ‘tadpole’ diagram and the GW self-energy. (2) Furthermore, closer
inspection shows that they would contain diagrammatic double-counting
errors in themselves. This demonstrates the usefulness of the Hedin
equations in that the resulting self-energy diagrams are guaranteed to be
free of such double-counting errors. In the present case, the double-
counting of diagrams is removed by the fact that the GT series starts with
the third order in W.

Starting from the third-order GT diagram, however, can give rise to a
wrong sign in the imaginary part of the self-energy, which can be
interpreted as a violation of causality’®?". In ref. '°, we argued that the
unphysical sign change occurs in an energy region far away from the Fermi
energy, outside the energy range of interest. Therefore, we accepted the
wrong sign with the expectation that the inclusion of the GW diagram
would restore the correct sign, as we show in Results to be indeed the case.

The present combined GWT self-energy still lacks a number of many-
body scattering effects that involve particle-particle (electron-electron,
hole-hole, and non-spin-flip electron-hole) scattering as well as high-
order exchange processes. These can, in principle, be included with a
general T-matrix formulation?°-22, which would, however, go beyond the
present paper.

Computational details

MBPT requires as a reference a non-interacting mean-field system. We
choose the ground state KS system as that reference system. The self-
consistent KS DFT calculations are carried out with the rLeur code, an all-
electron DFT implementation within the FLAPW method. Lattice constants
of 2.87 A, 3.54 A, and 3.53 A are employed for Fe, Co, and Ni, respectively.
We use the LSDA in the parameterization of Perdew and Zunger® for
the exchange-correlation functional. The LSDA has been chosen for the
reference system to stay consistent with previous works where the same
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functional was employed. This choice also facilitates the comparison with
the LSDA+DMFT method. For completeness, we have performed GWT
calculations for iron with PBE** instead of LSDA for the reference mean-
field system. The resulting renormalized band structures are very similar to
the ones presented here for the LSDA starting point. The LAPW basis set
cutoff is 6.2 Bohr~', and the muffin-tin radius is 2.2 Bohr for all systems.
The Brillouin zone (BZ) is sampled with a 14 x 14 x 14 k-point grid.

The quasiparticle band structures are computed perturbatively on top of
the LSDA eigensolutions, an approach commonly called ‘single-shot’ or
(specifically for the GW approximation) GoW, calculations. However, a self-
consistency condition for the Fermi energy is included, as explained
further below. The BZ is sampled with a 10 x 10 x 10 k-grid and 200 empty
states are used in summations over unoccupied states (involving KS states
up to 15 Ha). To represent the high-energy states accurately, we employ
additional basis functions given as high-energy local orbitals in the LAPW
formalism*>~#’. Two extra sets of local orbitals are added to each angular
momentum channel / from 0 to 3, and one set to / =4, amounting to 41
additional basis functions. As in the previous publication, we employ the
contour deformation technique'®'9#® for evaluating the frequency
convolution of the self-energy. Frequency meshes along the imaginary
axis are chosen to consist of 34 non-uniformly distributed points in
intervals from 0 to 2i Ha for GT and from 0 to 10i Ha for GW. Integrals along
the real axis are computed using uniform frequency grids with increments
of 1 mHa and 20 mHa for GT and GW, respectively.

In the T matrix, the screened interaction W(w) is approximated by its
static limit W(w — 0). This is common practice in BSE calculations and a
choice out of necessity: without the static approximation, the BSE would
contain three coupled frequencies, which would make the equation
untractable for real systems. The static approximation eliminates two of
the frequencies, and the equation becomes solvable by matrix inversion.
The static approximation is also motivated by the w dependence of the
screened interaction. Besides, the screened interaction W(w) is nearly
constant in the range of the low-energy magnonic excitations w, which
indicates that for all practical purposes the static approximation is a viable
approximation, as is indeed corroborated by our results.

The screened Coulomb interaction W is short-range in metallic systems.
This fact has motivated us to employ an on-site approximation for the
interaction, i.e, only electrons that occupy the same atomic site are
allowed to interact with each other, whereas the interaction of electrons
on different sites is neglected. We have tested this approximation®* and
found it to be a very good one for the systems studied in this work. It
should be noted that the formalism can be generalized straightforwardly in
a way that avoids the on-site approximation, but the notation would
become more complex, which is why we restrict ourselves to the on-site
treatment in this paper.

The non-self-consistent one-shot self-energy renormalization, as it is
carried out in this work, is known to (potentially) violate particle-number
conservation in metals*. As a simple remedy, one could determine a new
Fermi energy according to the renormalized bands. However, this comes
with the problem that the condition of vanishing lifetime broadening
at w =0 [ImXZ(w = 0) =0] is fulfilled for the old Fermi energy and not for
the new one. Furthermore, we will see that band anomalies (kinks,
satellites, etc.) can occur close to the Fermi energy. By the re-adjustment of
the Fermi energy, these features might shift to a wrong energetic position
or even end up on the wrong side of the Fermi surface. For these reasons,
we employ a correction scheme originally proposed by Hedin'®, which
solves the aforementioned problems in an elegant way. One introduces an
energy shift A, in ¥(w) —» Z(w — A,), which is determined such that the
Fermi energy remains unchanged by the self-energy renormalization. In
principle, this is a non-linear problem, which, in itself, requires a self-
consistent solution, since A, affects the Fermi energy (both before and
after renormalization), which, in turn, influences the choice of A,. The self-
energy, once calculated, can be reused in each step, however. So, this self-
consistent cycle can be performed with little computational overhead. One
should take into account, though, that the self-energy needs to be
evaluated at all k points and at all states around the Fermi energy for this
calculation. The energy shift A, is identical in the two spin-channels.
It can be interpreted’® as a simple constant shift of the exchange-
correlation potential (v, — vg. + A,), used for the underlying KS mean-
field system. (It might be surprising that A, should have any effect at
all, as it seems to simply shift the energy zero. However, one should not
forget that quasiparticle energies are defined absolutely and that such a
change, therefore, does have an effect. This issue is further discussed in
ref. ). In this way, v, is seen to incorporate, to some extent, information
about the renormalized system, which can be understood as low-level
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Table 4. List of A, and A, parameters used in the calculations.
A, (V) Ay (eV)
GWw GT GWT GW/GT/GWT
Fe 0.78 0.17 0.96 —-0.23
Co 0.88 0.08 0.92 —-0.43
Ni 0.90 0.02 0.89 —0.23

The parameter A, ensures the conservation of the particle number, and A,
enforces the Goldstone condition in the magnon excitation spectra
(negative sign corresponds to reduced exchange splitting). See text for
details.

self-consistency in the self-energy. For completeness, the actual values of
A, are listed in Table 4.

We employ another parameter in GT calculations to enforce the
correct long-wavelength behavior of the spin-wave dispersion

w(k)kigo. This Goldstone condition is violated in BSE (or T-matrix)
calculations if the Green function is taken from a standard LSDA
calculation®*38, As shown in ref. 3%, the fulfillment of this condition
would require a fully self-consistent calculation with the GW self-energy
(or, to be more precise, with a self-energy X that obeys 63;,/6G;, = W).
As a pragmatic approach, we suggested a simple correction to the LSDA
solution that enforces the Goldstone condition and which we then
showed to yield spin-wave dispersions in good agreement with the self-
consistent calculation. The correction is done by introducing a
parameter A,'%3* that shifts spin-up and -down states with respect to
each other. A, is varied until the spin-wave excitation energy vanishes in
the long-wavelength limit>*. The fact that the A, correction makes the
spin-wave dispersions agree well with self-consistent calculations
indicates that this correction, too, can be understood as imposing a
self-consistency condition, this time not in the Fermi energy (spin
independent, absolute energy alignment) but in the exchange splitting
(spin-dependent, relative energy alignment). The A, values used in this
work are listed in Table 4. We want to emphasize that the two
parameters, A, and A,, are obviously not free parameters. They are
determined from exact physical constraints.

Most GW studies focus on the real part of the quasiparticle energies
and ignore the imaginary part, which is proportional to the lifetime
broadening. We will see that in GT and GWT calculations the lifetime
broadening is absolutely crucial, so much so that, in some parts of
the renormalized band structure, the quasiparticle character is virtually
lost and quasiparticle energies cannot be uniquely determined anymore.
Therefore, we directly evaluate the momentum- and energy-resolved
spectral function

A%k, w) = Lsgn(er — w)

xIm{Tr[(w &)1 - Hg — Z5w - ) + Vi) '}, ®
which is an important ingredient in the photocurrent of photoemission
spectroscopy and can be directly compared with corresponding
experimental ARPES spectra.

Mathematically, the spectral function is the imaginary part of the trace
(Tr) over the renormalized Green function, here given in terms of an
inverse matrix by virtue of the Dyson equation. The prefactor makes the
spectral function positive over the whole energy range. The matrix can be
represented by any orthonormal basis. We use the basis of KS
eigenfunctions {@y,}, which makes the KS Hamiltonian Hj, diagonal with
the diagonal elements ¢}, . Together with £ A,l/2 (I is the unit matrix), the
KS energies are seen to be corrected as discussed above (ef, —
€q, FA/2 for o=1 and |). In general, the self-energy matrix Xg(w) with
the elements [2f(w)],, = (¢, |2°(w)|@g, ) is not diagonal, and neither is
the double-counting correction Vg. We treat the GW self-energy matrix as
a full matrix taking into account all off-diagonal elements, whereas the GT
self-energy is assumed to be diagonal. The neglect of the off-diagonal GT
matrix elements is justified by the fact that the GT self-energy is
much smaller than the GW self-energy. The term V} is included to avoid
double counting of exchange-correlation effects, described by v
of KS DFT and by the self-energy. We employ the following
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double-counting corrections: (1) V is a full matrix with the elements
(Vi) = (@ IVecl @) FDxOnw /2 (Fagain referring to 1 and |) for the
GW and GWT methods, (2) Vi =0 for the GT self-energy because the
latter describes correlation effects that are not present in vg. (or
v, F144/2), so no double-counting correction is required.

We want to give a few explanatory remarks in the following. One might
wonder why one explicitly includes A, in Eq. (8) when it is subtracted later
as part of Vi. First, this is true for GW and GWT but not for GT, where

v = 0. Second, the explicit inclusion of A, in Eq. (8) is a reminder that,
despite the cancellation (in GW and GWT), the results do depend on the
parameter because A, affects the Fermi energy, the Green function, the
screened interaction W, and the T matrix and, thus, the self-energy.
Although the A, parameter is well justified in GT (and also GWT)
calculations as a means to enforce the correct long-wavelength behavior
of the magnon dispersion, it might appear questionable to apply it also to
GW, which does not contain electron-magnon scattering. However, it does
make sense also for GW, not only for the sake of consistency with the other
methods but also because, as discussed above, it can be regarded as
partial self-consistency. As a final remark, it is helpful to consider Eq. (8) for
the case of purely diagonal matrices. The expression in the curly brackets
has then the form 3" 1/[w—e€p, — (of,[2°(w — Ay) — v |pp,)], here
written down for GW (or GWT), in which case A, cancels. (For GT,
one would have to replace vg. byzFA,/2) This expression becomes
large if any of the denominators is small or even zero. Setting the
denominator to zero yields the well-known simplified quasiparticle
equation w = ef, + (Pp,|Z°(w — A,) — V2 |@R,), which is commonly
employed in GW studies (usually without A, and often in a further
approximated, linearized form). The solution of this non-linear equation
would yield in w the complex quasiparticle energy.

The BSE equation [Eq. (6)] is solved on the basis of localized Wannier
functions yielding the T matrix in the same basis set. The Wannier set of s,
p, and d orbital characters is built from the 21 lowest KS eigenstates
(excluding the deep-lying semi-core states) for each spin channel by
projection onto suitable muffin-tin orbitals®>. We used this Wannier
representation already for the calculation of spin waves®®°', in which case,
however, the T matrix contains ladder diagrams starting from the first
(instead of the third) order in W.

The Wannier functions are employed only as a local basis for the
Bloch wave functions, which simplifies and accelerates the solution of
the BSE. They are not used for the purpose of constructing a correlated
subspace as in DMFT. Neither does our method require Hubbard U
parameters. One can therefore expect the method to depend only a
little on details of the Wannier construction. In fact, we found an overall
small influence of the choice of Wannier functions on the final GT and
GWT spectra.

The k point integration in GT is based on a special tetrahedron
method*®, which is required to efficiently compute BZ integrals of strongly
varying functions such as the T matrix.
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